资源类型

期刊论文 1286

年份

2023 118

2022 139

2021 99

2020 69

2019 68

2018 63

2017 48

2016 55

2015 66

2014 58

2013 62

2012 66

2011 53

2010 59

2009 56

2008 40

2007 53

2006 15

2005 11

2004 12

展开 ︾

关键词

水资源 16

细水雾 14

可持续发展 6

泥水盾构 6

反渗透 5

三峡工程 4

水环境 4

砂卵石地层 4

超滤 4

二氧化碳 3

优化 3

农业节水 3

半旱地农业 3

Preissmann格式 2

中国西北地区 2

京津冀 2

人工智能 2

创新 2

动力学 2

展开 ︾

检索范围:

排序: 展示方式:

Metal-based direct hydrogen generation as unconventional high density energy

Shuo XU, Jing LIU

《能源前沿(英文)》 2019年 第13卷 第1期   页码 27-53 doi: 10.1007/s11708-018-0603-x

摘要: Metals are unconventional hydrogen production materials which are of high energy densities. This paper comprehensively reviewed and digested the latest researches of the metal-based direct hydrogen generation and the unconventional energy utilization ways thus enabled. According to the metal activities, the reaction conditions of metals were generalized into three categories. The first ones refer to those which would violently react with water at ambient temperature. The second ones start to react with water after certain pretreatments. The third ones can only react with steam under somewhat harsh conditions. To interpret the metal-water reaction mechanisms at the molecular scale, the molecule dynamics simulation and computational quantum chemistry were introduced as representative theoretical analytical tools. Besides, the state-of-the-art of the metal-water reaction was presented with several ordinary metals as illustration examples, including the material treatment technologies and the evaluations of hydrogen evolution performances. Moreover, the energy capacities of various metals were summarized, and the application potentials of the metal-based direct hydrogen production approach were explored. Furthermore, the challenges lying behind this unconventional hydrogen generation method and energy strategy were raised, which outlined promising directions worth of further endeavors. Overall, active metals like Na and K are appropriate for rapid hydrogen production occasions. Of these metals discussed, Al, Mg and their alloys offer the most promising hydrogen generation route for clean and efficient propulsion and real-time power source. In the long run, there exists plenty of space for developing future energy technology along this direction.

关键词: metal     hydrogen generation     hydrolysis     metal water reaction     clean energy    

Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes

Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 494-508 doi: 10.1007/s11705-018-1732-9

摘要:

Electrolytic water splitting has been considered as a promising technology to produce highly pure H2 by using electrical power produced from wind, solar energy or other fitful renewable energy resources. Combining novel self-supporting structure and high-performance transition metal phosphides (TMP) shows substantial promise for practical application in water splitting. In this review, we try to provide a comprehensive analysis of the design and fabrication of various self-supported TMP electrodes for hydrogen evolution reaction, which are divided into three categories: catalysts growing on carbon-based substrates, catalysts growing on metal-based substrates and freestanding catalyst films. The material structures together with catalytic performances of self-supported electrodes are presented and discussed. We also show the specific strategies to further improve the catalytic performance by elemental doping or incorporation of nanocarbons. The simple and one-step methods to fabricate self-supported TMP electrodes are also highlighted. Finally, the challenges and perspectives for self-supported TMP electrodes in water splitting application are briefly discussed.

关键词: transition metal phosphide     self-supported electrode     electrocatalysis     hydrogen evolution reaction    

Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient

《化学科学与工程前沿(英文)》 2021年 第15卷 第6期   页码 1487-1499 doi: 10.1007/s11705-021-2085-3

摘要: Developing cost-effective electrocatalysts for oxygen reduction reaction (ORR), oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) is vital in energy conversion and storage applications. Herein, we report a simple method for the synthesis of graphene-reinforced CoS/C nanocomposites and the evaluation of their electrocatalytic performance for typical electrocatalytic reactions. Nanocomposites of CoS embedded in N, S co-doped porous carbon and graphene (CoS@C/Graphene) were generated via simultaneous sulfurization and carbonization of one-pot synthesized graphite oxide-ZIF-67 precursors. The obtained CoS@C/Graphene nanocomposites were characterized by X-ray diffraction, Raman spectroscopy, thermogravimetric analysis-mass spectroscopy, scanning electronic microscopy, transmission electronic microscopy, X-ray photoelectron spectroscopy and gas sorption. It is found that CoS nanoparticles homogenously dispersed in the in situ formed N, S co-doped porous carbon/graphene matrix. The CoS@C/10Graphene composite not only shows excellent electrocatalytic activity toward ORR with high onset potential of 0.89 V, four-electron pathway and superior durability of maintaining 98% of current after continuously running for around 5 h, but also exhibits good performance for OER and HER, due to the improved electrical conductivity, increased catalytic active sites and connectivity between the electrocatalytic active CoS and the carbon matrix. This work offers a new approach for the development of novel multifunctional nanocomposites for the next generation of energy conversion and storage applications.

关键词: MOF derivative     graphene     electrocatalyst     oxygen reduction reaction     oxygen evolution reaction     hydrogen evolution reaction    

Solid-state NMR for metal-containing zeolites: From active sites to reaction mechanism

Xingling Zhao, Jun Xu, Feng Deng

《化学科学与工程前沿(英文)》 2020年 第14卷 第2期   页码 159-187 doi: 10.1007/s11705-019-1885-1

摘要: Metal-containing zeolite catalysts have found a wide range of applications in heterogeneous catalysis. To understand the nature of metal active sites and the reaction mechanism over such catalysts is of great importance for the establishment of structure-activity relationship. The advanced solid-state NMR (SSNMR) spectroscopy is robust in the study of zeolites and zeolite-catalyzed reactions. In this review, we summarize recent developments and applications of SSNMR for exploring the structure and property of active sites in metal-containing zeolites. Moreover, detailed information on host-guest interactions in the relevant zeolite catalysis obtained by SSNMR is also discussed. Finally, we highlight the mechanistic understanding of catalytic reactions on metal-containing zeolites based on the observation of key surface species and active intermediates.

关键词: metal-containing zeolites     solid-state NMR     active site     host-guest interaction     reaction mechanism    

identification and toxicity change during oxidation of methotrexate by ferrate and permanganate in water

《环境科学与工程前沿(英文)》 2022年 第16卷 第7期 doi: 10.1007/s11783-021-1501-8

摘要:

• Oxidation of methotrexate by high-valent metal-oxo species was first explored.

关键词: Anticancer drugs     High-valent metal-oxo species     Oxidation kinetics     Reaction mechanisms     Multi-endpoint toxicity    

Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water

Yueqing Wang, Jintao Zhang

《化学科学与工程前沿(英文)》 2018年 第12卷 第4期   页码 838-854 doi: 10.1007/s11705-018-1746-3

摘要: Water splitting is a highly promising approach for the generation of sustainable, clean hydrogen energy. Tremendous efforts have been devoted to exploring highly efficient and abundant metal oxide electrocatalysts for oxygen evolution and hydrogen evolution reactions to lower the energy consumption in water splitting. In this review, we summarize the recent advances on the development of metal oxide electrocatalysts with special emphasis on the structural engineering of nanostructures from particle size, composition, crystalline facet, hybrid structure as well as the conductive supports. The special strategies relay on the transformation from the metal organic framework and ion exchange reactions for the preparation of novel metal oxide nanostructures with boosting the catalytic activities are also discussed. The fascinating methods would pave the way for rational design of advanced electrocatalysts for efficient water splitting.

关键词: water splitting     structure engineering     metal organic framework     ion exchange     synergistic effect     hybrid structure     conductive supports    

route to achieve MoSe-NiSe on nickel foam as efficient dual functional electrocatalysts for overall water

《能源前沿(英文)》 2022年 第16卷 第3期   页码 483-491 doi: 10.1007/s11708-022-0813-0

摘要: Since the catalytic activity of present nickel-based synthetic selenide is still to be improved, MoSe2-Ni3Se2 was synthesized on nickel foam (NF) (MoSe2-Ni3Se2/NF) by introducing a molybdenum source. After the molybdenum source was introduced, the surface of the catalyst changed from a single-phase structure to a multi-phase structure. The catalyst surface with enriched active sites and the synergistic effect of MoSe2 and Ni3Se2 together enhance the hydrogen evolution reactions (HER), the oxygen evolution reactions (OER), and electrocatalytic total water splitting activity of the catalyst. The overpotential of the MoSe2-Ni3Se2/NF electrocatalyst is only 259 mV and 395 mV at a current density of 100 mA/cm2 for HER and OER, respectively. MoSe2-Ni3Se2/NF with a two-electrode system attains a current density of 10 mA/cm2 at 1.60 V. In addition, the overpotential of HER and OER of MoSe2-Ni3Se2/NF within 80000 s and the decomposition voltage of electrocatalytic total water decomposition hardly changed, showing an extremely strong stability. The improvement of MoSe2-Ni3Se2/NF catalytic activity is attributed to the establishment of the multi-phase structure and the optimized inoculation of the multi-component and multi-interface.

关键词: three-dimensional molybdenum nanomaterials     hydrogen evolution reaction     oxygen evolution reaction     overall water splitting    

Review on research and application of mesoporous transitional metal oxides in water treatment

Minghao SUI, Lei SHE

《环境科学与工程前沿(英文)》 2013年 第7卷 第6期   页码 795-802 doi: 10.1007/s11783-013-0521-4

摘要: This paper reviews the application of mesoporous transitional metal oxides in water treatment on basis of the catalysis and adsorption. Mesoporous transitional metal oxides are characterized by their intrinsic features, such as a high surface area, a highly ordered array of unidimensional pores with a very narrow pore size distribution, and highly dispersed active sites. Finally, the suggestions of further study on application are proposed.

关键词: mesoporous materials     transitional metal oxides     catalysis     adsorption     water treatment    

Catalytic activity of noble metal nanoparticles toward hydrodechlorination: influence of catalyst electronic

Man ZHANG,Feng HE,Dongye ZHAO

《环境科学与工程前沿(英文)》 2015年 第9卷 第5期   页码 888-896 doi: 10.1007/s11783-015-0774-1

摘要: In this study, stabilized Pd, Pt and Au nanoparticles were successfully prepared in aqueous phase using sodium carboxymethyl cellulose (CMC) as a capping agent. These metal nanoparticles were then tested for catalytic hydrodechlorination toward two classes of organochlorinated compounds (vinyl polychlorides including trichloroethylene (TCE), tetrachloroethylene (PCE), and alkyl polychlorides including 1,1,1-trichloroethane (1,1,1-TCA), and 1,1,1,2-tetrachloroethane (1,1,1,2-TeCA)) to determine the rate-limiting steps and to explore the reaction mechanisms. The surface area normalized reaction rate constant, , showed a systematic dependence on the electronic structure (the density of states at the Fermi level) of the metals, suggesting that adsorption of organochlorinated reactants on the metal catalyst surfaces is the rate-limiting step for catalytic hydrodechlorination. Hydrodechlorination rates of 1,1,1-TCA and 1,1,1,2-TeCA agreed with the bond strength of the first (weakest) dissociated C-Cl bond, suggesting that C-Cl bond cleavage, which is the first step for dissociative adsorption of the alkyl polychlorides, controlled the catalytic hydrodechlorination rate. However, hydrodechlorination rates of TCE and PCE correlated with the adsorption energies of their molecular (non-dissociative) adsorption on the noble metals rather than with the first C-Cl bond strength, suggesting that molecular adsorption governs the reaction rate for hydrodechlorination of the vinyl polychlorides.

关键词: catalytic hydrodechlorination     electronic structure     metal nanoparticles     reaction mechanisms    

cluster-based organic frameworks as highly active electrocatalysts for oxygen reduction and oxygen evolution reaction

《化学科学与工程前沿(英文)》 2023年 第17卷 第5期   页码 570-580 doi: 10.1007/s11705-022-2247-y

摘要: Recently, metal–organic frameworks are one of the potential catalytic materials for electrocatalytic applications. The oxygen reduction reaction and oxygen evolution reaction catalytic activities of heterometallic cluster-based organic frameworks are investigated using density functional theory. Firstly, the catalytic activities of heterometallic clusters are investigated. Among all heterometallic clusters, Fe2Mn–Mn has a minimum overpotential of 0.35 V for oxygen reduction reaction, and Fe2Co–Co possesses the smallest overpotential of 0.32 V for oxygen evolution reaction, respectively 100 and 50 mV lower than those of Pt(111) and RuO2(110) catalysts. The analysis of the potential gap of Fe2M clusters indicates that Fe2Mn, Fe2Co, and Fe2Ni clusters possess good bifunctional catalytic activity. Additionally, the catalytic activity of Fe2Mn and Fe2Co connected through 3,3′,5,5′-azobenzenetetracarboxylate linker to form Fe2M–PCN–Fe2M is explored. Compared with Fe2Mn–PCN–Fe2Mn, Fe2Co–PCN–Fe2Co, and isolated Fe2M clusters, the mixed-metal Fe2Co–PCN–Fe2Mn possesses excellent bifunctional catalytic activity, and the values of potential gap on the Mn and Co sites of Fe2Co–PCN–Fe2Mn are 0.69 and 0.70 V, respectively. Furthermore, the analysis of the electron structure indicates that constructing a mixed-metal cluster can efficiently enhance the electronic properties of the catalyst. In conclusion, the mixed-metal cluster strategy provides a new approach to further design and synthesize high-efficiency bifunctional electrocatalysts.

关键词: bimetallic metal–organic frameworks     bifunctional electrocatalyst     density functional theory     oxygen reduction reaction     oxygen evolution reaction    

Fluoride ions adsorption from water by CaCO enhanced Mn–Fe mixed metal oxides

《化学科学与工程前沿(英文)》 2023年 第17卷 第2期   页码 236-248 doi: 10.1007/s11705-022-2193-8

摘要: Novel CaCO3-enhanced Mn–Fe mixed metal oxides (CMFC) were successfully prepared for the first time by a simple-green hydrothermal strategy without any surfactant or template combined with calcination process. These oxides were then employed as an adsorbent for adsorptive removal of excess fluoride ions. The adsorbent was characterized by SEM, XPS, XRD, FTIR, and BET analysis techniques. The adsorption property of CMFC toward fluoride ion was analyzed by batch experiments. In fact, CMFC exhibited adsorption capacity of 227.3 mg∙g‒1 toward fluoride ion. Results showed that ion exchange, electrostatic attraction and chemical adsorption were the main mechanism for the adhesion of large amount of fluoride ion on the CMFC surface, and the high adsorption capacity responded to the low pH of the adsorption system. When the fluoride ion concentration was increased from 20 to 200 mg∙L‒1, Langmuir model was more in line with experimental results. The change of fluoride ion adsorption with respect to time was accurately described by pseudo-second-order kinetics. After five cycles of use, the adsorbent still maintains a performance of 70.6% of efficiency, compared to the fresh adsorbent. Therefore, this material may act as a potential candidate for adsorbent with broad range of application prospects.

关键词: mesoporous materials     metal oxides     fluoride ion     adsorption mechanism    

Enhanced activity of bimetallic Fe-Cu catalysts supported on ceria toward water gas shift reaction: synergistic

《化学科学与工程前沿(英文)》 2023年 第17卷 第12期   页码 1962-1972 doi: 10.1007/s11705-023-2359-z

摘要: Within the “hydrogen chain”, the high-temperature water gas shift reaction represents a key step to improve the H2 yield and adjust the H2/COx ratio to fit the constraints of downstream processes. Despite the commercial application of the high-temperature water gas shift, novel catalysts characterized by higher intrinsic activity (especially at low temperatures), good thermal stability, and no chromium content are needed. In this work, we propose bimetallic iron-copper catalysts supported on ceria, characterized by low active phase content (iron oxide + copper oxide < 5 wt %). Fresh and used samples were characterized by inductively coupled plasma mass spectrometry, X-ray diffraction, nitrogen physisorption, scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy, and temperature programmed reduction in hydrogen to relate physicochemical features and catalytic activity. The sample with iron/copper ≈ 1 and 4 wt % active phase content showed the best catalytic properties in terms of turnover frequency, no methane formation, and stability. Its unique properties were due to both strong iron-copper interaction and strong metal-support interaction, leading to outstanding redox behavior.

关键词: water gas shift     iron     copper     bimetallic catalysts     ceria     hydrogen    

Metal-free, carbon-based catalysts for oxygen reduction reactions

Zhiyi Wu,Zafar Iqbal,Xianqin Wang

《化学科学与工程前沿(英文)》 2015年 第9卷 第3期   页码 280-294 doi: 10.1007/s11705-015-1524-4

摘要: Developing metal-free, carbon-based catalysts to replace platinum-based catalysts for oxygen reduction reactions (ORRs) is an emerging area of research. In recent years, different carbon structures including carbon doped with IIIA-VIIA heteroatoms (C−M site-based, where M represents the doped heteroatom) and polynitrogen (PN) compounds encapsulated in carbon nanotubes (CNTs) (N−N site-based) have been synthesized. Compared to metallic catalysts, these materials are highly active, stable, inexpensive, and environmentally friendly. This review discusses the development of these materials, their ORR performances and the mechanisms for how the incorporation of heteroatoms enhances the ORR activity. Strategies for tailoring the structures of the carbon substrates to improve ORR performance are also discussed. Future studies in this area will need to include optimizing synthetic strategies to control the type, amount and distribution of the incorporated heteroatoms, as well as better understanding the ORR mechanisms in these catalysts.

关键词: oxygen reduction reaction     electrocatalysis     metal-free     carbon-based     polynitrogen    

Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting

Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei

《化学科学与工程前沿(英文)》 2018年 第12卷 第3期   页码 537-554 doi: 10.1007/s11705-018-1719-6

摘要:

Electrochemical water splitting is an efficient and clean strategy to produce sustainable energy productions (especially hydrogen) from earth-abundant water. Recently, layered double hydroxide (LDH)-based materials have gained increasing attentions as promising electrocatalysts for water splitting. Designing LDHs into hierarchical architectures (e.g., core-shell nanoarrays) is one of the most promising strategies to improve their electrocatalytic performances, owing to the abundant exposure of active sites. This review mainly focuses on recent progress on the synthesis of hierarchical LDH-based core-shell nanoarrays as high performance electrocatalysts for electrochemical water splitting. By classifying different nanostructured materials combined with LDHs, a number of LDH-based core-shell nanoarrays have been developed and their synthesis strategies, structural characters and electrochemical performances are rationally described. Moreover, further developments and challenges in developing promising electrocatalysts based on hierarchical nanostructured LDHs are covered from the viewpoint of fundamental research and practical applications.

关键词: layered double hydroxides (LDHs)     core-shell nanoarrays     oxygen evolution reaction (OER)     hydrogen evolution reaction (HER)     photoelectrochemical water splitting (PEC)    

Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel

Tianxiang XIA, Xuehua LIU

《环境科学与工程前沿(英文)》 2011年 第5卷 第2期   页码 236-242 doi: 10.1007/s11783-010-0218-8

摘要: Copper and zinc interaction on clearance from water and distribution in different tissues was investigated for the freshwater mussel, , under laboratory conditions. Clearance rate of Cu or Zn from water was highly dependent on exposure concentration. Interaction effect was most evident at 300 μg·L Cu exposure and depressed the Zn clearance rate significantly ( <0.05). However, the presence of 100 μg·L and 300 μg·L Zn hardly affected the Cu clearance rate. The 300 μg·L Cu presence enhanced Cu accumulation in each tissue most significantly ( <0.01), but caused Zn content to decrease in the gills by 62% ( <0.05), viscera by 49% ( <0.05) and foot by 31% ( <0.05), and increase in the mantle by 97% ( <0.05) and the muscles by 243% ( <0.05) for different Zn exposure treatments. The response of metal accumulation in various tissues of the test mussels indicated that Zn transferred from the gills, viscera and foot to the mantle and muscles might be one of the important characteristics of the Zn regulatory mechanism by leading to a narrow range of Zn concentration in the different tissues.

关键词: interaction     mussel     copper     zinc     clearance     distribution    

标题 作者 时间 类型 操作

Metal-based direct hydrogen generation as unconventional high density energy

Shuo XU, Jing LIU

期刊论文

Self-supported transition metal phosphide based electrodes as high-efficient water splitting cathodes

Yan Zhang, Jian Xiao, Qiying Lv, Shuai Wang

期刊论文

Graphene-reinforced metal-organic frameworks derived cobalt sulfide/carbon nanocomposites as efficient

期刊论文

Solid-state NMR for metal-containing zeolites: From active sites to reaction mechanism

Xingling Zhao, Jun Xu, Feng Deng

期刊论文

identification and toxicity change during oxidation of methotrexate by ferrate and permanganate in water

期刊论文

Structural engineering of transition metal-based nanostructured electrocatalysts for efficient water

Yueqing Wang, Jintao Zhang

期刊论文

route to achieve MoSe-NiSe on nickel foam as efficient dual functional electrocatalysts for overall water

期刊论文

Review on research and application of mesoporous transitional metal oxides in water treatment

Minghao SUI, Lei SHE

期刊论文

Catalytic activity of noble metal nanoparticles toward hydrodechlorination: influence of catalyst electronic

Man ZHANG,Feng HE,Dongye ZHAO

期刊论文

cluster-based organic frameworks as highly active electrocatalysts for oxygen reduction and oxygen evolution reaction

期刊论文

Fluoride ions adsorption from water by CaCO enhanced Mn–Fe mixed metal oxides

期刊论文

Enhanced activity of bimetallic Fe-Cu catalysts supported on ceria toward water gas shift reaction: synergistic

期刊论文

Metal-free, carbon-based catalysts for oxygen reduction reactions

Zhiyi Wu,Zafar Iqbal,Xianqin Wang

期刊论文

Layered double hydroxide-based core-shell nanoarrays for efficient electrochemical water splitting

Wenfu Xie, Zhenhua Li, Mingfei Shao, Min Wei

期刊论文

Copper and zinc interaction on water clearance and tissue metal distribution in the freshwater mussel

Tianxiang XIA, Xuehua LIU

期刊论文